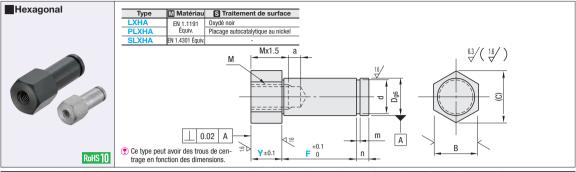

Arbres en porte-à-faux

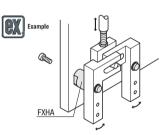
Montage à vis avec rainure de bague de retenue


Référence pièce		D ₉ 6		Incrément de 1mm		М " Н		w		E	m	_	Prix unitaire											
Type	N°	<u>'</u>	Dg6	Υ	F	(normal)	п	VV	Dim. réf.	Tolérance	m	n	FXHA	PFXHA	SFXHA									
	6	6	-0.004 -0.012			М 3	10	8	5	+0.075	0.7	2												
	6A	U		J		IVI 3	14	12	J	0	0.7	2												
	8	8			5~100	M 4	12	10	7	+0.090	0.9													
	A8	0	- 0.005 - 0.014		3~100	191 -4	16	14	,	0	0.5	3												
	10	10				M 6	15	13	9.6	0		3												
	10A			2~60			20	17		- 0.090														
	12	12	- 0.006 - 0.017										2~00		M 8	17	14	11.5						
FXHA	13	13			10~150		18	15	12.4		1.15	5 4												
1741114	15	15				M10	20	17	14.3	0														
PFXHA	16	16					21	18	15.2	-0.110														
FIAHA	17	17					23	20	16.2		1.35													
SFXHA	18	18	20 22 -0.007 -0.020				20		17															
SFAHA	20	20					26	24	19															
	20A	20			10 100	M 8	20	2-7	10															
	22	22				M16	28	26	21			5												
	22A			4~75		M12				0 -0.210														
	25	25				M16	31	27	23.9															
	25A					M12			20.0															
	30	30				M20	36	32	28.6		1.65													
	30A	00	30	l		M16	00	02	20.0		1.00													

M	a
M 3~M10	5
M12~M20	7
Quand (Mx1.5)+a. l'avant-trou destir traversant. Quand Mx1.5≥Y+ également travers	né à M est F, M est

Référence pi	Référence pièce)g6	Incrément de 1mm		M	а	V H		w	d		m	,	Prix unitaire							
Type	N°	'	J g6	Y F		(normal) a	_ v	V 11		Dim. réf.	Tolérance	III	n	FXJA	PFXJA	SFXJA						
	6	6	-0.004 -0.012			М 3		8	10	8	5	+0.075	0.7	2								
	6A	0				IVI 3		12	14	12] 3	0	0.7	2								
	8	8			5~100	M 4		10	12	10	7	+0.090 0.9	0.0	,								
	A8	٥	-0.005 -0.014		5~100	IVI 4		14	16	14	'		0.9	3								
	10	10				M 6		13	15	13	9.6	0		3								
	10A	10		7~60		IVI 6	5	18	20	17	9.6	- 0.090										
	12	12	-0.006 i -0.017							7~00		M 8) 3	15	17	14	11.5					
FXJA	13	13			10~100	I IVI O		16	18	15	12.4		1.15									
FAJA	15	15				M10		18	20	17	14.3	0										
PFXJA	16	16						19	9 21 18 15.2 -0.110													
PEAJA	17	17					IVITO		20	23	20	16.2			"							
SFXJA	18	18						21	20	20	17											
SFAJA	20	20				M12 M 8 M12 M 8 M16 M12 M20	24	26	24	19												
	20A	20						24	24 26	24	19											
	22	22						26	28	26	21		1.35	5								
	22A			7~75			7	20	20	20	21	0										
	25	25		1-15			'	29	31	31 27	23.9	-0.210										
	25A	23						23	31	21	23.5			3								
	30	30						34	36	32	28.6		1.65									
	30A	30				M16		54	50	32	20.0		1.00									

Lorsque W<V, les méplats W atteignent 0.D.V.
 Quand (Mx1.5)+a≥Y+F, l'avant-trou destiné à M est traversant. Quand Mx1.5≥Y+F, M est également traversant.
</p>



Référence pièce				Incrément de 1m		M (nor-		В	(0)		d			Prix unitaire				
Type	N°		Dg6	Y	F	mal)	а	В	(C)	Dim. réf.	Tolérance	m	n	LXHA	PLXHA	SLXHA		
	6	6	-0.004 -0.012			M 3		8	9.2	5	+0.075	0.7	2					
	8	8	-0.005 -0.014	1	5~100	M 4	M 4 M 6	10	11.5	7	+0.090	0.9	3					
	10	10				M 6		13	15.0	9.6	-0.090		٦					
	12	12	-0.006 -0.017 -0.007 -0.020	1		M 8		14	16.2	11.5								
	13	13				2~60		IVI O	5	17	19.6	12.4		1.15				
LXHA	15	15			M10 10~150 M12 M16 M12 M20 M16			17 19.0	14.3	0	0							
	16	16				M10		19	21.9	15.2	-0.110		4					
PLXHA	17	17				IVITO		19	21.9	16.2								
	18	18								17								
SLXHA	20	20				1440		24	24 27.7 19 21	19								
	22	22				IVITZ					1.35							
	25	25		4~75		M16	M12 M20	27	31.2	23.9	0 -0.210	1.65	5					
	25A	20		4~/5		M12		21	31.2	23.9								
	30	30				M20		32	36.9	28.6								
	30A	30				M16		32	30.9	20.0		1.00						

Quand (Mx1.5)+a≥Y+F, l'avant-trou destiné à M est traversant. Quand Mx1.5≥Y+F, M est également traversant.

Référence pièce - Y - F
FXHA12 - 5 - F15

	Tolérance de la dimension Y	Quatre méplats	Ajoute un avant-trou	Dimensions des méplats	Ajoute une fente droite	Dimension Y		
Modifica-	YKC YKC	WSC W R0.5may		- FW	 	YC	Jeu de bague de retenue	
	YKC	wsc w	© Ø0.02 R0.5max	FW	N N	YC		
Code	YKC	WSC	APC	FW	MM	YC	SET	
Spéc.	Fait passer la tolérance de la dimension Y à ±0.05. © 3' Sapplique à tous les types. Dude de commande YKC	Passe de deux à quatre méplats. S'applique aux types standard et à épaulement.	Ajoute un avant-trou au support de l'arbre © S'applique à tous les types. ● Pour 8A et 12A, la profondeur de l'avant-trou est de 2mm. Didé de commande APC	S'applique lorsque la dimension du méplat change. Incrément de 1mm Tode de commande FW3 ** OsFW-15 ** Crosque FW=0, il n'y a aucun méplat. ** S'applique aux types standard et à épaulement.	Ajoute une fente droite à D. © the termande MM Il ne sera pas aligné sur les méplats. D. N. V. 115-20 2.0 2.5 22-20 3.0 1.5 25-20 3.0 3.0 1.5 S'applique quand (Mx1.5)+a <y+f.< th=""><th>Augmente la dimension Y par incréments. Incrément de 0,1 mm (20de de commande) YC10.8</th><th>Une bague de retenue applicable à chaque diamètre d'arbre est incluse. [20de de command] SET (3) S'applique à tous les types. Forme de la bague de retenue N°=6, 8: Bague de retenue de type E M°=10 ~ 30A: Bague de retenue de type E Arbres en porto-a-fraux Matériau de la bague de retenue Arbres en porto-a-fraux Matériau de la bague de retenue Regue de retenue Arbres en porto-a-fraux Matériau de la bague de retenue Arbres en porto-a-fraux Matériau de la bague de retenue Arbres en porto-a-fraux Matériau de la bague de retenue Arbres en porto-a-fraux Matériau EN 1.4301 Équix EN 1.4301 Équix</th></y+f.<>	Augmente la dimension Y par incréments. Incrément de 0,1 mm (20de de commande) YC10.8	Une bague de retenue applicable à chaque diamètre d'arbre est incluse. [20de de command] SET (3) S'applique à tous les types. Forme de la bague de retenue N°=6, 8: Bague de retenue de type E M°=10 ~ 30A: Bague de retenue de type E Arbres en porto-a-fraux Matériau de la bague de retenue Arbres en porto-a-fraux Matériau de la bague de retenue Regue de retenue Arbres en porto-a-fraux Matériau de la bague de retenue Arbres en porto-a-fraux Matériau de la bague de retenue Arbres en porto-a-fraux Matériau de la bague de retenue Arbres en porto-a-fraux Matériau EN 1.4301 Équix EN 1.4301 Équix	